Related Questions with Solutions

Questions

Quetion: 01

If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4\hat{i}+3\hat{j}+4\hat{k}$ and $\vec{c}=\hat{i}+\alpha\hat{j}+\beta\hat{k}$ are linearly dependent vectors and $|\vec{c}| = \sqrt{3}$, then

A.
$$\alpha = 1$$
, $\beta = -1$

B.
$$\alpha = 1$$
, $\beta = \pm 1$

C.
$$\alpha = -1$$
, $\beta = \pm 1$

D.
$$\alpha = \pm 1$$
, $\beta = 1$

Solutions

Solution: 01

If $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent vectors, then \vec{c} should be a linear combination of \vec{a} and \vec{b} .

Let
$$\vec{c} = p\vec{a} + q\vec{b}$$

i.e.,
$$\hat{i} + \alpha \hat{j} + \beta \hat{k} = p(\hat{i} + \hat{j} + \hat{k}) + q(4\hat{i} + 3\hat{j} + 4\hat{k})$$
 Equating coefficients of $\hat{i}, \hat{j}, \hat{k}$ from both sides, we get

$$1 = p + 4q$$
, $\alpha = p + 3q$, $\beta = p + 4q$
From first and third, $\beta = 1$

Now,
$$|\vec{c}| = \sqrt{3}[$$
 Given $] \Rightarrow 1 + \alpha^2 + \beta^2 = 3$

$$\Rightarrow$$
 1 + α 2 + 1 = 3 \Rightarrow α = \pm 1

Hence, $\alpha = \pm 1$, $\beta = 1$

Correct Options

Answer:01

Correct Options: D